3.2557 \(\int \frac{\left (a+b x+c x^2\right )^p}{d+e x} \, dx\)

Optimal. Leaf size=184 \[ \frac{2^{2 p-1} \left (a+b x+c x^2\right )^p \left (\frac{e \left (-\sqrt{b^2-4 a c}+b+2 c x\right )}{c (d+e x)}\right )^{-p} \left (\frac{e \left (\sqrt{b^2-4 a c}+b+2 c x\right )}{c (d+e x)}\right )^{-p} F_1\left (-2 p;-p,-p;1-2 p;\frac{2 c d-\left (b-\sqrt{b^2-4 a c}\right ) e}{2 c (d+e x)},\frac{2 d-\frac{\left (b+\sqrt{b^2-4 a c}\right ) e}{c}}{2 (d+e x)}\right )}{e p} \]

[Out]

(2^(-1 + 2*p)*(a + b*x + c*x^2)^p*AppellF1[-2*p, -p, -p, 1 - 2*p, (2*c*d - (b -
Sqrt[b^2 - 4*a*c])*e)/(2*c*(d + e*x)), (2*d - ((b + Sqrt[b^2 - 4*a*c])*e)/c)/(2*
(d + e*x))])/(e*p*((e*(b - Sqrt[b^2 - 4*a*c] + 2*c*x))/(c*(d + e*x)))^p*((e*(b +
 Sqrt[b^2 - 4*a*c] + 2*c*x))/(c*(d + e*x)))^p)

_______________________________________________________________________________________

Rubi [A]  time = 0.517619, antiderivative size = 184, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.1 \[ \frac{2^{2 p-1} \left (a+b x+c x^2\right )^p \left (\frac{e \left (-\sqrt{b^2-4 a c}+b+2 c x\right )}{c (d+e x)}\right )^{-p} \left (\frac{e \left (\sqrt{b^2-4 a c}+b+2 c x\right )}{c (d+e x)}\right )^{-p} F_1\left (-2 p;-p,-p;1-2 p;\frac{2 c d-\left (b-\sqrt{b^2-4 a c}\right ) e}{2 c (d+e x)},\frac{2 d-\frac{\left (b+\sqrt{b^2-4 a c}\right ) e}{c}}{2 (d+e x)}\right )}{e p} \]

Antiderivative was successfully verified.

[In]  Int[(a + b*x + c*x^2)^p/(d + e*x),x]

[Out]

(2^(-1 + 2*p)*(a + b*x + c*x^2)^p*AppellF1[-2*p, -p, -p, 1 - 2*p, (2*c*d - (b -
Sqrt[b^2 - 4*a*c])*e)/(2*c*(d + e*x)), (2*d - ((b + Sqrt[b^2 - 4*a*c])*e)/c)/(2*
(d + e*x))])/(e*p*((e*(b - Sqrt[b^2 - 4*a*c] + 2*c*x))/(c*(d + e*x)))^p*((e*(b +
 Sqrt[b^2 - 4*a*c] + 2*c*x))/(c*(d + e*x)))^p)

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 31.5037, size = 141, normalized size = 0.77 \[ \frac{\left (\frac{e \left (b + 2 c x - \sqrt{- 4 a c + b^{2}}\right )}{2 c \left (d + e x\right )}\right )^{- p} \left (\frac{e \left (b + 2 c x + \sqrt{- 4 a c + b^{2}}\right )}{2 c \left (d + e x\right )}\right )^{- p} \left (a + b x + c x^{2}\right )^{p} \operatorname{appellf_{1}}{\left (- 2 p,- p,- p,- 2 p + 1,\frac{c d - \frac{e \left (b - \sqrt{- 4 a c + b^{2}}\right )}{2}}{c \left (d + e x\right )},\frac{c d - \frac{e \left (b + \sqrt{- 4 a c + b^{2}}\right )}{2}}{c \left (d + e x\right )} \right )}}{2 e p} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((c*x**2+b*x+a)**p/(e*x+d),x)

[Out]

(e*(b + 2*c*x - sqrt(-4*a*c + b**2))/(2*c*(d + e*x)))**(-p)*(e*(b + 2*c*x + sqrt
(-4*a*c + b**2))/(2*c*(d + e*x)))**(-p)*(a + b*x + c*x**2)**p*appellf1(-2*p, -p,
 -p, -2*p + 1, (c*d - e*(b - sqrt(-4*a*c + b**2))/2)/(c*(d + e*x)), (c*d - e*(b
+ sqrt(-4*a*c + b**2))/2)/(c*(d + e*x)))/(2*e*p)

_______________________________________________________________________________________

Mathematica [A]  time = 0.531434, size = 182, normalized size = 0.99 \[ \frac{2^{2 p-1} (a+x (b+c x))^p \left (\frac{e \left (-\sqrt{b^2-4 a c}+b+2 c x\right )}{c (d+e x)}\right )^{-p} \left (\frac{e \left (\sqrt{b^2-4 a c}+b+2 c x\right )}{c (d+e x)}\right )^{-p} F_1\left (-2 p;-p,-p;1-2 p;\frac{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}{2 c (d+e x)},\frac{2 c d-b e+\sqrt{b^2-4 a c} e}{2 c d+2 c e x}\right )}{e p} \]

Warning: Unable to verify antiderivative.

[In]  Integrate[(a + b*x + c*x^2)^p/(d + e*x),x]

[Out]

(2^(-1 + 2*p)*(a + x*(b + c*x))^p*AppellF1[-2*p, -p, -p, 1 - 2*p, (2*c*d - (b +
Sqrt[b^2 - 4*a*c])*e)/(2*c*(d + e*x)), (2*c*d - b*e + Sqrt[b^2 - 4*a*c]*e)/(2*c*
d + 2*c*e*x)])/(e*p*((e*(b - Sqrt[b^2 - 4*a*c] + 2*c*x))/(c*(d + e*x)))^p*((e*(b
 + Sqrt[b^2 - 4*a*c] + 2*c*x))/(c*(d + e*x)))^p)

_______________________________________________________________________________________

Maple [F]  time = 0.147, size = 0, normalized size = 0. \[ \int{\frac{ \left ( c{x}^{2}+bx+a \right ) ^{p}}{ex+d}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((c*x^2+b*x+a)^p/(e*x+d),x)

[Out]

int((c*x^2+b*x+a)^p/(e*x+d),x)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (c x^{2} + b x + a\right )}^{p}}{e x + d}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((c*x^2 + b*x + a)^p/(e*x + d),x, algorithm="maxima")

[Out]

integrate((c*x^2 + b*x + a)^p/(e*x + d), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{{\left (c x^{2} + b x + a\right )}^{p}}{e x + d}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((c*x^2 + b*x + a)^p/(e*x + d),x, algorithm="fricas")

[Out]

integral((c*x^2 + b*x + a)^p/(e*x + d), x)

_______________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((c*x**2+b*x+a)**p/(e*x+d),x)

[Out]

Timed out

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (c x^{2} + b x + a\right )}^{p}}{e x + d}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((c*x^2 + b*x + a)^p/(e*x + d),x, algorithm="giac")

[Out]

integrate((c*x^2 + b*x + a)^p/(e*x + d), x)